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Transient Hot Wire (THW) Method:
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The standard method for measuring thermal transport properties of dielectric
solids such as ceramics and refractories is the transient hot wire (THW) techni-
que. In its simplest arrangement, a thin wire is embedded between two sample
halves, where it acts simultaneously as a resistive heat source and a thermo-
meter. From its temperature signal, the thermal conductivity and the thermal
diffusivity of the dielectric can be derived. Up to now, there is no uncertainty
assessment for this technique strictly following the ISO Guide to the Expression
of Uncertainty in Measurement. Here we analyze the ISO standard uncertainty
of the THW technique in the same way as in a previous paper on the uncer-
tainty of the closely related transient hot strip (THS) technique. The two papers
provide a comprehensive comparison of the most important advantages and
disadvantages of these two transient techniques. The results obtained here for
the uncertainty (5.80 for the thermal conductivity and 300 for the thermal
diffusivity) are nearly the same as those for the THS method. Experiments on
a Pyrex standard-reference sample confirm the results.

KEY WORDS: standard uncertainty; thermal conductivity; thermal diffusivity;
transient hot strip method; transient hot wire method.

1. INTRODUCTION

Among the non-steady-state techniques to measure the thermal conduc-
tivity * and thermal diffusivity a of dielectric solids, the transient hot wire
(THW) method is by far the most frequently used (e.g., Refs. 1�5). In
practice, there are three different experimental arrangements: the standard
one-wire setup and two modified versions, i.e., the parallel and the cross
wire techniques.
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In the standard configuration, a thin metal wire, clamped between two
brick-shaped sample halves, simultaneously acts as a resistive heat source
and a thermometer. The surroundings serve as a heat sink at constant
operating temperature. The temperature-dependent voltage drop across the
wire provides a measure of the thermal transport properties mentioned
above.

In the last few years, another transient technique appeared that is
closely related to the standard THW technique, the transient hot strip
(THS) method. Here, instead of the wire, a thin metal foil is used as the
active thermal transport property sensor. Advantages of this slight modifi-
cation arise mainly from two factors: (1) due to the strip geometry, a THS
setup is easier to arrange than a THW setup; and (2) due to its greater
surface and smaller thickness (&=0.01 mm), the density of heat flow of the
strip and its thermal contact resistance to the sample may be significantly
lower than for a wire. However, as has been shown in Ref. 6, the expanded
ISO standard uncertainty for a coverage factor of k=2 of a typical THS
setup is 50 for the thermal conductivity and 220 for the thermal dif-
fusivity as assessed against the standard reference CRM 039 (Pyrex). The
THW uncertainty of the thermal conductivity, as found in the literature, is
claimed to be better than 50 (cf., e.g., Ref. 1).

The objective of this paper is to estimate the ISO uncertainty [7] of
the standard THW setup under almost the same conditions as for the THS
instrument. In accordance with Ref. 6, we analyze three types of major
errors caused by the model, the evaluation procedure, and the measuring
instruments. Within the scope of this investigation, the sensitivity of * and a
to errors of the measurement inputs is quantified. The uncertainty estimated
for the thermal conductivity of CRM 039 is confirmed experimentally.

2. THEORY

A very long metal wire of radius r � 0 is entirely embedded in an
unbounded homogeneous and isotropic dielectric solid, initially at the tem-
perature T(r, t=0)=T0 . When a constant electric current I is passed
through the wire, the latter simultaneously serves as a continuous heat
source of rate 8=UI and as a resistance thermometer of output voltage
U(T(t)). This transient signal provides a measure of the thermal conductivity
* and diffusivity a of the sample. It is specified to a good approximation
by the line source solution of the conduction equation:

2U(T (t))=U(T (t))&U0=
:U 2

0 I
4?L*

fW({)=c(*) fW({) (1)
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Here

fW({)=&Ei(&{&2) (2)

and

{=
- 4at

r
(3)

U0 denotes the voltage drop at t=0 and : is the temperature coefficient of
the electrical resistance of the wire of length L.

In practice, a THW signal U(t) is monitored pointwise as the time
series of N ordered pairs U(ti)=U(t0), U(t1), U(t2),..., U(tN). By evaluation
of the amplitude c(*) and shape fW({(a)) of this signal, the thermal con-
ductivity * and the thermal diffusivity a of a finite sample can basically be
determined. However, since the model is derived for a one-dimensional
continuous heat source and an infinite sample, the nonvanishing heat
capacity of the real wire and the exposed outer surface of the real sample
are not encountered. Equation (1) therefore is practically valid only for a
limited interval of time, [0<tmin , tmax], during which the thermal influence
of the wire can be confined to the sample itself.

As can be seen from the literature (cf., e.g., Ref. 1), the nonlinear and
implicit expression, Eq. (1), is linearized with respect to ln { by expanding
fW({) in a McLaurin series and retaining the first two terms only. For
values of 1�{<<1, the expression,

U(t)&U0r
:U 2

0I
4?L* \ln t+ln

4a
r2 &#+=cFW(t)=ct$+d (4)

sufficiently approximates the THW voltage signal U(t) during the time
segment [tmin , tmax]. In Eq. (4), #=0.5772... is Euler's constant and t$
stands for ln t. The constants c=:U 2

0I�(4?L*) and d=c(&#+ln 4a�r2) are
the slope and intercept, respectively, of the line segment. Both unknown
parameters can be determined from a monitored THW signal, 2Ui (t),
according to

c=
� ti$ � 2Ui&N � ti$ 2U i

(� ti$)
2&N � ti$

2 (5)

and

d=
1
N

(� 2U i&c � ti$) (6)
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Table I. Formal Correspondence Between the THW Mathematical Model and the Linear
and Nonlinear THS Models (D: Strip Width)

Method Slope�amplitude Intercept�shape

THW c=:U 2
0I�4?L* d=c(&#+ln 4a�r2)

THS
Linear m=:U 2

0 I�4?L* n=m(3&#+ln 4a�D2)

Nonlinear k(*)=:U 2
0I�2 - ? L* f ({(a))={ erf({&1)&

{2

- 4?
[1&exp(&{&2)]

&
1

- 4?
Ei(&{&2)

respectively. The measurands finally follow from

*=
:U 2

0I
4?Lc

(7)

and

a=
r2

4
exp \d

c
+#+ (8)

Formal correspondences between the THW mathematical model, on the
one hand, and the nonlinear and the linear THS [6] models, respectively,
on the other hand, are listed in Table I.

Any observed THW signal, U(ti), deviates from an ideal signal, U*(t),
by a certain time-dependent amount, namely, 2U(ti). 2U(ti) is due to dif-
ferent error sources that can be divided into three characteristic groups:
first, errors due to the instrumentation, 2$U J; second, random evaluation
errors, $U E; third, specific model errors, $U M. They all depend on time in
their characteristic way.

U(t)=U*(t)+$U(t)=U*(t)+$U M(t)+$U E(t)+$U J(t) (9)

2.1. Ideal Model Errors

A THW setup can be analytically treated only for the ideal physical
model as outlined above. This thermally closed system has a simple
balance: the electric power, P=UI, fed to the line source, is completely and
instantly liberated to the sink (sample), where it is continuously stored.

In contrast to the ideal model, the experimental setup has to be con-
sidered an open system because of its inner and outer thermal leakages. At
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the inner boundary, first, a certain fraction 811({) of the input power
80=P flows ``into'' the wire, where it is stored due to the wire's nonzero
heat capacity. Second, if the sample is not opaque, the fraction 812({) of
the output power of the wire can be transferred by radiation through the
sample. At the outer boundary, due to its finite radius and length, the
cylindrical sample liberates an additional fraction, 821({), to the lateral
surfaces and a fraction 822({)=28fin to both bases (cf. Fig. 3). All four
interactive transport mechanisms introduce characteristic model errors,
namely, $U W({i), $U S({i), $U R({ i), and $U L({i). They depend on time {,
however, each in a different way. The error $U W({i) becomes effective for
times {<1 only, whereas $U R({i), $U S({i), and $U L({i) give rise to non-
linear deviations for long times. In contrast to the first error, the latter can
be easily identified as a departure from linearity of the signal plot U i vs ln t
[Eq. (4)].

2.1.1. Inner Boundary

2.1.1.1. Nonvanishing Heat Capacity of the Wire. A wire of volume
V=?r2L, density \W, and specific heat capacity cW

P can store heat at a net
rate 811=&V(\WcW

P &\cP) dT W�dt. Here, \ and cP are the sample's den-
sity and specific heat, respectively. Thus, there is a stray heat flow 811

``into'' the wire when this is self-heated by the constant electric power 80

[8]. While 811 is stored, the mean temperature of the wire T W rises accord-
ingly. The associated model error $U W can be expressed by the working
equation, Eq. (10),

$U W=
811({i)

80

cfW({i) (10)

where

dT W

dt
=

c
:U0(t)

exp \&
r2

4at+
and

$U W=
r2(\WcW

P &\cP)
4*

1
ti

exp \&
1
{2

i + c _&Ei \&
1
{2

i +& (11)

Within the limit t � 0, the right-hand side of Eq. (10) becomes |811 �80 | � 1.
When the experiment starts, the total input power is consumed by the
wire. But just 1 s later, the ratio of heat flows rapidly drops to typically
|811 �80 |r10 because of the low heat capacity of the wire.
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2.1.1.2. Radiation Loss. The cylindrical sample is enclosed in a cell
whose length is much greater than its diameter 2R. The wire of radius
r<<R and the inner surfaces of the cell are diffusively gray radiators; the
sample is transparent. The exchange of energy between the wire and the
cell by radiation heat transfer is given by

812=
[2?rL_(T 4&T 4

0)]

_ 1
=W+

r
R \ 1

=C&1+&
(12)

Here, =W and =C are the total emissivities of the wire and the cell, respec-
tively; _ is the Stefan�Boltzmann constant [9]. Taking into account that
=C>=W and T&T0<<T0 , Eq. (12) can be simplified to

812r8?r=WL_T 3
0(T&T0) (13)

Now the model error induced by radiation heat transfer can be written

$U S=
812

80

cfW({i) (14)

Expressed in nondimensional units, the resulting equation is

$U S

2U
=

812({i)
80

=
2r=W_T 3

0

*
(2 ln {i&#) (15)

Thus, for a given working temperature T0 , the error due to the wire's
radiative heat transfer increases in time as ln {. The constant of propor-
tionality is =W�*, the ratio of the wire's total emissivity to the thermal
conductivity of the sample.

2.1.2. Outer Boundary

2.1.2.1. Finite Length of the Sample. The ideal model underlying the
THW technique is that of an endless line source (wire) embedded in an
unbounded sample. Here, the heat, emitted by the source, flows radially
through the sample resulting in concentric isotherms. In practice, the cylin-
drical sample has not only a finite radius but also a finite length. At both
cylinder bases, there are stray heat flows out of the sample so that the
mean temperature of the wire does not increase to the values predicted by
theory. The radial�axial transient heat flow problem has been analyzed for
different boundary conditions and borderline cases in, e.g., Refs. 10 and 11.
As expected, all given solutions indicate that the error due to axial heat
flow, $U L(ti), depends on the ratio L*=L�(2r). The error increases with
time and approaches particularly large values for a sample whose heat
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capacity is low compared to that of the wire. A general solution of the
problem under discussion is presented in Ref. 12 for isothermal boundary
conditions in radial and axial directions. The mean wire temperature can
be written

T*({)=
P
L*

G*(L*, |, ;, {) (16)

with

G*=
16
?4 :

�

k=0

1
(2k+1)2

_|
�

0

1&exp[&[((2k+1)?�L*)2+u2]({2�4)]
[((2k+1)?�L*)]2+u2 uf (u) du (17)

f (u)=
[Y0(u) 8(u)&J0 9(u)]

[82(u)+9 2(u)]
(18)

8(u)=2 _uJ1(u)+_\1
;

&
1
|+\

?(2k+1) r
L +

2

&
u2

|& J0(u)& (19)

9(u)=2 _uY1(u)+_\1
;

&
1
|+\

?(2k+1) r
L +

2

&
u2

|& Y0(u)& (20)

Here, J0( } } } ) and J1( } } } ) are the first-kind and Y0( } } } ) and Y1( } } } ) are
the second-kind Bessel functions of zero order and first order, respectively;
|=\cP�(\WcW

P ) and ;=*�*W. As mentioned above, the superscript ``W''
indicates properties related to the wire. The voltage error associated with
the finite wire length is specified by

$U L

U
=1&4?

G*(L*, |, ;, {i)
fW({ i)

(21)

To keep axial heat loss error within a few percent, there are three condi-
tions [12] that have to be fulfilled at isothermal boundaries: - | L*>500,
- ; L*>500, and 100<|t*<1000. These requirements are easily met for
materials having higher thermal conductivities and heat capacities than
gases, i.e., for liquids and solids. Especially for solids in gas-filled vessels,
the errors due to finite wire length are in fact significantly lower than
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predicted by Eq. (21) because the boundary conditions at the bases of the
sample are adiabatic rather than isothermal.

2.1.2.2. Finite Radius of the Sample. In order to quantify the error
$U R({i) caused by the density of heat flowing outward, 8$21(R0 , {)�A, at
the exposed lateral surface A(R=R0) of a finite sample, its actual outer
boundary conditions must first be specified: for simplicity's sake, a cylindri-
cal sample of finite radius R=R0 is considered a subsystem cut out of the
homogeneous and isotropic infinite sample. According to the basic theory,
the subsystem's interfacial area A is crossed by the heat flux 8$P(R0 , {)�A.
It follows that the error $U({i) varies directly with the difference of both
heat flows, 8$21 and 8$P :

821=8$21&8$P (22)

Obviously, $U R gets closer to zero as the stray heat flux 8$21 �A approaches
the value of the equivalent virtual heat flux within the infinite sample. This
is the same situation as with the THS method. As has been discussed at
some length for this technique in Ref. 6, the thermal situation at the surface
of a finite sample can be interpreted as a nonlinear boundary condition of
the second kind:

*C �T
�n }R0

=
8$21(R0 , t)

A
(23)

Here, *C denotes the thermal conductivity of a sample holder and �T��n
is the derivative along the outward normal to the surface A. While
8$P(R0 , t)�A can be calculated from the ideal model, 8$21(t) cannot be
exactly defined for a given outer boundary condition. However, two special
cases, in which (1) *C>>* or (2) *C<<*, lead to analytical solutions [13].
For *C>>*, the finite sample surface may be considered quasi-isothermal
(homogeneous boundary condition of the first kind). Then its temperature
excursion, T $(R0 , t), is governed by the equation

T $(t)=T0+
8

4?L*
ln \R0

r +
2

&4 :
�

n=1

J0(+nr�R0)
+2

nJ 2
1(+n)

__ 8
4?L*

+
1
2

T0 +nJ1(+n)& exp \&+2
nat

R 2
0 + (24)

where, again, J0( } } } ) and J1( } } } ) are the first-kind Bessel functions of zero
order and first order, respectively. The second case of particular interest
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is the quasi-adiabatic surface where *C<<* (boundary condition of the
fourth kind):

T $(t)=T0+
8

4?L* _
4at
R 2

0

+
r2

R 2
0

+2 ln
R0

r
&

3
2

&4 :
�

n=1

J0(+nr�R0)
+2

nJ 2
0(+n)

exp \&
+2

nat
R 2

0 +& (25)

The eigenvalues of Eqs. (24) and (25) are given by

J0(+)=0 and J1(+)=0 (26)

respectively.
Some numerical results for R0=10r and k=U0 I�(4?L*)=1 K are

shown in Fig. 1 vs the nondimensional time {(R0), which is related here to
the characteristic length R=R0 . As shown in this figure, any THW signal
can be observed only within the area between the limiting curves denoted
``adiabatic'' and ``isothermal.'' Figure 2 represents departures in the tem-
perature excursions of an adiabatically and an isothermally bounded finite
sample from those of the ideal sample. Obviously, a THW�THS experiment

Fig. 1. Linear heat source excess temperature vs nondimensional time for three
boundary conditions (cf. text).
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Fig. 2. Difference between an ideal and a real curve with isothermal or adiabatic
boundary conditions vs nondimensional time (cf. Fig. 1).

can be run under near-adiabatic3 or under near-isothermal boundary
conditions without any major change in quality within a limited period of
time.

To show both above-mentioned outer boundary conditions during one
experimental run on a reference specimen, we used a massive metal sample
holder (*CM>>*) which was thermally coated on its outer surfaces with an
insulating material (*CI<<*). As shown in the signal plot (Fig. 3), after 2 s,
the excess temperature of the wire first inclines quasi-linearly. This effect
can be observed as long as the thermal wave travels through the sample
exclusively. The quasi-ideal segment is denoted ``L1.'' It ends when, after
some time, the sample holder is reached. Due to the near-isothermal condi-
tions, the temperature of the wire rises only slightly during segment ``L2.''
As time goes on, the wave front leaves the holder for the coating. Here,
near-adiabatic conditions are realized; the temperature then increases
rapidly.

To calculate the error $U R(ti) due to its finite size, the cylindrical
sample is considered here to be encapsulated in a metal sample holder of
thermal conductivity *CM>>*. The holder itself is kept at a constant tem-
perature T=T0 , e.g., in a thermostated bath. Assuming that the tempera-
tures for an unbounded and a finite sample in pairs differ by the same
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Fig. 3. THW excess temperature vs ln t monitored for a Pyrex sample encap-
sulated in a massive metal sample holder surrounded by a thermally insulating
board (surroundings) under room conditions. (cf. Fig. 1, curves ``isothermal'' and
``adiabatic'').

value when measured at the wire, R=r, and at R=R0 , the following
approximation for the finite sample can be derived:

f $W(({)r &Ei \&
r2

4at++Ei \&
R 2

0

4at+ (27)

The differences among the closed form approximation, Eq. (27), the exact
solution, Eq. (25), and the linearized case, Eq. (2), can be seen in Fig. 4.

Now the error $U R(ti) in the voltage drop of the wire can easily be
formulated in terms of Eq. (27):

$U R(ti)=:U0[T $(0, ti)&T (0, ti)]=:
U 2

0I
4?L*

Ei \&
R 2

0

4ati + (28)

and

$U R(ti)
U

r
$U R(ti)

U0

=:
8

4?*L
Ei \&

R 2
0

4ati + (29)

The exponential integral &Ei(&R2
0 �4ati) does not have a significant effect

on the error $U R for arguments R2
0 �4ati<0.5. This is the case for a maxi-

mum excess temperature of surface A of about 0.1 K. From R2
0 �4attr0.5
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Fig. 4. Exact [Eq. (25)] and approximated [Eq. (27)] THW shape function vs.
nondimensional time for an isothermally bounded sample. Equation (2) represents
the ideal sample (cf. text).

the error begins to increase rapidly with time. An experiment should there-
fore be stopped at tmax�R2

0 �2a (cf. Ref. 8).

2.2. Linear Model Error

Due to the asymptotic form of the linearization of Eq. (1), there is a
certain deviation from this ideal model function. In Fig. 5, the relative trun-
cation error of FW({) is plotted vs { as the percentage deviation from its
origin, fW({). For comparison, the diagram also shows the related linear
procedure error of the THS method, denoted as F2 [6]. Surprisingly, the
departure of the linearized THS function F2 from the original function is
smaller than that of the expression analyzed here.

From the data set [FW({i)& f ({i)]� f ({i) calculated pointwise, as plotted
in Fig. 5, the linear model error in * and a cannot be derived directly
because it does not depend only on {min(tmin), but also on the other end
point, {max(tmax), of the linear segment of the signal [{min , {max]. Since this
error is introduced by the truncation of the Ei series, it can be expressed
to a good approximation by the remainder R2 , which is given by the third
term of the expansion:

&Ei \&
1
{2+=&#&ln \ 1

{2++\ 1
{2&

1
4{4&. . .+r&#+ln {2+

1
{2 (30)
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Fig. 5. Deviation of quasi-linear functions FW and F2 from the related THW�THS
shape functions fW({) and f ({), respectively, vs nondimensional time { as a percent-
age (cf. text).

R2=c(1�{2)=cr2�4at is now analyzed as the first-order deviation of voltage
$U L(ti) due to linearization. The approximate relative error now reads
[{2(ln {2&#)]&1. Expressed in terms of the time-dependent error $U L, the
following is obtained for each pair of experimental data U(ti):

$U L=
cr2

4ati
=

c
exp((d�c)+#) exp(ti$)

(31)

For the linear segment of an observed THW signal, the induced deviations
from both measured quantities, c and d, are given by

ulin(c)=
c

exp((d�c)+#)
� ti$ � exp(&ti$)&N � ti$ exp(&ti$)

(� ti$)
2&N � ti$

2 (32)

and

ulin(d )=
1
N _ c

exp((d�c)+#)
: exp(&ti$)&m � ti$& (33)

A numerical evaluation of Eqs. (32) and (33) with respect to the
measurands * and a yields the plots in Figs. 6 and 7. Separately for both
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Fig. 6. Model error of measured thermal conductivity * caused by linearization of
Eq. (1). The error has been plotted in terms of different upper end points {max of
any linear interval.

Fig. 7. Model error of measured thermal diffusivity a caused by linearization of
Eq. (1). The error has been plotted in terms of different upper end points {max of
any linear interval.
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Fig. 8. Percentage linear model error of measured thermal conductivity * and
thermal diffusivity a for an upper end point {max=20 for the THW and THS [6]
methods. The error has been plotted vs the lower end point of any linear time inter-
val (cf. text).

measurands, they show the effect which a variation of the upper end point
{max between 5 and 150 exerts on the related model error in terms of the
lower end point {min . For more convenient comparison, numerical values
of ulin(*)�* and ulin(a)�a vs {min are plotted in Fig. 8 for a fixed value of
{max=20. As shown more rigorously later [Eqs. (37) and (38)], the model
error linked with thermal diffusivity is larger than that linked with thermal
conductivity. The chart also shows the related values for the THS method.

2.3. Evaluation Error

An observed THW signal is always subject to random errors causing
deviations from the signal predicted by the underlying linear model. The
model parameters c and d can therefore be estimated only to a restricted
degree of confidence that is expressed here in terms of the confidence inter-
vals uA(c) and uA(d ). These intervals are associated with a characteristic
confidence level P. The confidence intervals of any model parameters bm

are generally given by

uA(bm)=F(P, j)
/2

N& j
:*mm (34)
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Here, F(P, j ) is a function of probability depending on j as the degree of
freedom and on P as the confidence level. /2 denotes the sum of square
deviations of N data points and :*mm is an element of the inverted Hessian
[6]. In the case of a simple linear regression model ( j=2) and a percent-
age confidence level of P=68.30,4 the probability function provides
F(0.683,2)=2.3, and both diagonal elements of the matrix :* are

:*11=
� ti$

2

N � t i$
2&(� t i$)

2 (35)

:*22=
N

N � ti$
2&(� t i$)

2 (36)

When Eqs. (35) and (36), respectively, are inserted into Eq. (34), the con-
fidence intervals for parameters c and d, referred to as standard uncertain-
ties of type A, are written as follows:

uA(c)=�2.3/2

N&2
}

N
N � t i$

2&(� t i$)
2 (37)

uA(d )=�2.3/2

N&2
}

� ti$
2

N � t i$
2&(� t i$)

2 (38)

2.4. Measurement Errors

In close analogy with Ref. 6, we take the four most significant
measurement errors, $U J, into account. Three of these stem from the elec-
trical part of the setup. First, to simplify the experiment, the wire is heated
not by constant power but by constant current. Since the resistance of the
wire, R(T ), depends on the temperature, this mode results in a continuous
growth of the heat flow 80 as given by 80=P=R(T ) I 2. Second, the
instability of the current source, $I, causes a departure of the THW voltage
signal, namely, U(ti) $I�I. Due to the limited accuracy and nonvanishing
integration time of the voltmeter, the measurement is affected by an error
$U V. Third, even in well thermostated setups, an additional error of the
measured voltage arises from a temperature drift in the sample. It follows
that

$U J=$U P+$U V+$U 1+$U T (39)
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Here, the superscripts denote the following potential error sources.

P: Constant current mode

V: Nonideal voltmeter

I: Instability of current source

T: Temperature drift

2.4.1. Constant-Current Mode
The electrical resistance R(T ) of the Joule-heated wire increases con-

tinuously in terms of its temperature T. When a constant current I is fed to
the wire, it generates a heat flow that is not constant but varies at a rate
P=UI=R(T ) I 2. This effect causes an error $U P of the measured voltage
signal.

To determine the influence of the temperature-dependent generation
rate within Eq. (1), the constant power U0I is replaced by U(t) I0 . After
some rearrangements, the working equation reads as follows:

U(t)=
U0

1&(c�U0) fW({)
(40)

A Taylor series expansion of U(t) about cfW({)�U0 is used to determine the
error since cfW({)�U0<<1:

U(t)=U0+cfW({)+
c2

U0

fW
2({)+ } } } (41)

The difference between Eq. (1) and Eq. (41) is represented by the third
term on the right-hand side of the latter expression because higher-order
terms may be neglected in view of the above-mentioned inequality. Thus,

$U P=
c2

U0

Ei2 \ 1
{2+ (42)

In terms of the nondimensional time {, three cases can be considered.

1. {<<1 O $U P=
c2

U0

{2 (43)

2. {=1 O $U P=0.53
c2

U0

(44)

3. {>>1 O $U P=
c2

?U0

(1.21+ln {)2 (45)

During a normal THW run all three cases occur successively.
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2.4.2. Voltage Measurement

Errors of the measured voltage, $U V, of the monitored signal U(ti) are
in most cases caused by three effects: the finite precision of the voltmeter
u(U ), its nonvanishing integration time $t while the signal rises as
k(�f ({i)��t), and the current source uncertainty u(I ). Both instrument
uncertainties, u(U ) and u(I ), depend on time. Their systematic components
are covered by Eq. (1). Their random components cause an increase in the
/2 deviations of the observed signal from the fitted one. As A-type uncer-
tainties, they have already been accounted for in Section 2.3. Thus, the
residual time-dependent voltage error is introduced by the integration time
of the voltmeter and the transient signal rise:

$U V= &$t c
�
�t _Ei \&

1
{2+&=

$t
t

c exp \&
r2

4at+ (46)

2.4.3. Ambient Temperature Variation

Any variation of the temperature of the sample environment, dTD �dt,
gives rise to a departure of the measured voltage signal of

$U T=:U0

dTD

dt
t i (47)

3. STANDARD UNCERTAINTY

According to Ref. 7 the combined standard uncertainty uc( y) of the
quantity y is the positive square root of the combined variance u2

c( y)
obtained from

u2
c( y)= :

N

i=1
\�y(x� )

�xi +
2

u2(x i) (48)

where u2(xi) are the variances of the input quantities xi . The partial
derivatives of y with respect to xi are referred to as sensitivity coefficients.

For the THW method, all sensitivity coefficients can readily be
analytically calculated because of the explicit character of the model equa-
tion, Eq. (4). From this expression, working equations are derived for both
measurands [Eqs. (7) and (8)]. The combined variances for * and a are
obtained from the time-independent standard uncertainties of the input
quantities and the linear model errors:
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\uc(*)
* +

2

=\u(:)
: +

2

+\u(I)
I +

2

+\u(L)
L +

2

+\u(U0)
U0 +

2

+\u(c)
c +

2

+\$*
* +

2

(49)

\uc(a)
a +

2

=\2
u(r)

r +
2

+\d
c

u(d )
d +

2

+\d
c

u(c)
c +

2

+\$a
a +

2

(50)

The model errors are taken into account in each case by the last term on
the right-hand sides of the two equations. The variances of input quantities
:, I, L, U0 , and r can readily be calculated, whereas those of parameters
c and d consist of two subcomponents of type A and type B according to
Ref. 7:

\u(c)
c +

2

=\uA(c)
c +

2

+\uB(c)
c +

2

(51)

\u(d )
d +

2

=\uA(d )
d +

2

+\uB(d )
d +

2

(52)

The A-type terms are already defined by Eqs. (37) and (38). They vary
directly as the root mean square value of /, which itself depends on the
current source noise in particular. Since the current noise is randomly dis-
tributed, both A-type terms do not depend on time. The B-type terms,
defined by Eq. (9), allow for systematic voltage deviations. These seven
time-dependent errors are caused by the nonzero heat capacity of the wire,
thermal radiation, outer boundary conditions (axial and radial heat losses),
nonconstant power supply, finite integration time of the voltmeter, and
temperature drift of the sample surroundings. In principle, if systematic
errors and their causes are known, they can be compensated by correc-
tions. However, each of these types of errors under consideration here is a
function of * and�or a and, thus, not known a priori. Therefore, they are
considered as components to the uncertainty of the measurands.

From a formal point of view, the relevant superscripts, W, L, R, S, P,
V, and T, are now replaced by an index J for the subsequent summation:

u2
B(c)=:

J

u2
J (c) (53)

u2
B(d )=:

J

u2
J (d ) (54)
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Table II. Experimental Parameters

Thermal conductivity 1.14 W } m&1 } K&1

Thermal diffusivity 0.5 mm } s&1

Working temperature 23%C
Rate of heat flow 0.4 W
Wire length (100\0.5) mm
Wire diameter (0.175\0.05) mm
Wire heat capacity 450 J } kg&1 } K&1

Wire density 9000 kg } m&3

Wire temp. coefficient (0.006\0.00005) K&1

Evaluation time interval 1.2�40 s
Max. temp. excursion 1.9 K
Sampling rate 14.3 s&1

Current (1\0.007) A
Voltmeter uncertainty 4_10&5 V
Voltmeter integration time 0.017 s
Sample thickness 30 mm
Temperature drift 1_10&4 K

Here, J=5, for example, indicates deviations caused by the error P
(nonconstant power supply). Using Eqs. (5) and (6), respectively, the
standard uncertainties of c and d can be written as follows:

uJ (c)=
� t i$ � $U J

i &N � t i$ $U J
i

(� t i$)
2&N � ti$

2 (55)

uJ (d )=
1
N \: $U J

i &u j (m) : ti$+ (56)

Equations (55) and (56) complete the set of expressions necessary for
assessing the standard uncertainty of the THW method. In accordance with
Ref. 7, a typical solution has been derived for values of Pyrex CRM 039
(Certified Reference Material) as listed in Table II. A wire diameter of
0.175 mm has been chosen because this is the most common one in
measurements.

First, the B-type variances, u2
B , of slope c and intercept d, introduced

by model errors, are determined from Eqs. (55) and (56). The results are
given in Table III. Second, introduced by the evaluation procedure, A-type
variances, u2

A , of c and d are calculated using the known current source
noise for estimating /2. According to Eqs. (37) and (38), they follow as

(uA(c)�c)2=9.5_10&7 and (uA(d )�d )2=3.2_10&7
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Table III. B-Type Variances of Estimation Parameters c and d (cf. Text)

Model error (uJ (c)�c)2 (uJ (d )�d )2

W 2.5_10&5 1.3_10&5

R 1.6_10&5 2.4_10&6

P 6.0_10&4 4.6_10&5

V 4.8_10&6 2.4_10&6

T 2.3_10&5 1.5_10&6

L 2.9_10&6 5.3_10&5

S 1.1_10&7 8.4_10&9

These values are combined with those given in Table III. The results,

(uc(c)�c)2=6.8_10&4 and (uc(d )�d )2=6.6_10&5

are entered into Table IV for subsequent determination of combined
variances. Third, the variances for both measurands * and a from input
quantities, xi , are estimated. The values are listed in Table IV. Inserting the
values in Table IV into Eqs. (54) and (55) yields the absolute standard
deviations for * and a, respectively:

u(*)=0.033 W } m&1 } K&1 and u(a)=0.075 mm2 } s&1

The corresponding relative values as percentages are

u(*)�*=2.90 and u(a)�a=150

Table IV. Variances for Measurands * and a from Input Quantities, xi , and
Linearization Error

xi (uxi
(*)�*)2 (uxi

(a)�a)2

: 7_10&5 ��
U0 1_10&8 ��
I 5_10&5 ��
L 2.5_10&5 ��
r �� 2.5_10&3

c 6.8_10&4 1.7_10&2

d �� 1.7_10&3

Linear model error 2.5_10&7 1.8_10&5
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Fig. 9. Uncertainty of thermal conductivity of a Pyrex CRM 039 sample as
assessed for wires of different radii (cf. text).

From this, the expanded relative uncertainties for a coverage factor of k=2
finally follow:

u$(*)�*=5.80 and u$(a)�a=300

These values compare with those obtained by the THS technique [6].
Finally, one effect of the (indirect) influence of the wire radius on the

uncertainties of thermal conductivity and thermal diffusivity of Pyrex
assessed above should be discussed in this section. As plotted in Fig. 9 for
different wire radii, both uncertainties first decrease with decreasing wire
radius down to a minimum between 0.1 mm and 0.13 mm. But then they
increase again. An analysis of the individual uncertainty components shows
that at wire radii lower than about 0.15 mm, the error due to the constant
current mode (cf. Section 2.4.1) becomes dominant. This is because
$U P B Ei2(1�{2) and { B 1�r2. Therefore, under conditions as chosen here,
THW measurements should be best performed with a wire radius of about
0.1 mm.

4. EXPERIMENTS

As presented in Ref. 6 for the THS method, here, again, the standard
uncertainty of the thermal conductivity assessed theoretically is compared
with the experimental results obtained from samples of Pyrex 7740 glass.
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This material, manufactured by Corning France, was chosen for several
reasons: (1) because of its thermal conductivity of 1.14 W } m&1 } K&1 at
room temperature, it represents a wide range of dielectrics; (2) this material
has been in use for a long time and has been studied intensively; and (3) our
sample was cut from the original bulk that was used for the certification of
the standard reference material ``CRM 039'' for thermal conductivity in
which PTB participated [14]. Moreover, our spectral transmittance mea-
surements in the range 1.25 to 20 +m on Pyrex samples of 1-mm thickness
show the material to be opaque above 4.7 +m and to have, at room tempera-
ture, a total transmittance of only 1.2_10&3. Hence, there should be no
significant radiative heat transfer between the wire and the cell walls.

The experiments were performed in the THW standard configuration
using a nickel wire 100 mm in length and 0.0875 mm in radius. The dimen-
sions of each sample half are 100_30_18 mm3. The thermal part of the
setup is mounted inside our insulated container [6], which is immersed in
a thermostated bath. In a four-wire circuit, the wire is connected to a con-
stant current source and a voltmeter. Beginning at time 0, t0 , a constant
current of 1 A is passed through the wire for about 2 min, while the voltage
drop U(ti) is recorded pointwise at a sampling rate of 14 s&1. For each
working temperature TW , three repeated runs were performed. The maxi-
mum departure between the certified values and the results of our experi-
mental runs are 1.40 at most without any systematic deviations (cf. Fig. 10).

Fig. 10. Deviations between the experimental data and the certified standard data
of Pyrex CRM 039.
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In Ref. 14 an uncertainty of at least 1.20 is claimed for the SRM data.
Hence, the uncertainty values estimated here are in good agreement.

5. SUMMARY

We have assessed the uncertainty of the thermal conductivity and ther-
mal diffusivity for a standard hot wire setup in accordance with the recom-
mendations of the ISO Guide to the Expression of Uncertainty in
Measurement [7]. The mathematical model, the evaluation procedure, and
the measuring instruments have been analyzed as major uncertainty sources.
The expanded uncertainty of 5.80 assessed for * has been verified experi-
mentally against CRM 039 for temperatures between &75 and 195%C. The
deviations of the experimental results from the reference values are within
a range of \1.40 and, hence, confirm the calibration associated with
CRM 039 very well.
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